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Upper critical dimension for aggregation processes
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Aggregation kinetics are often described by the population balance (or Smoluchowski coagulation)
equation. The population balance equation is a mean-field equation for an aggregation process. An
upper critical dimension d. calculated for a given aggregation frequency has been used by other in-
vestigators to characterize the validity of this mean-field equation. It is shown that the upper critical
dimension is also related to the singularity of the self-similar spectrum. This paper demonstrates
that the usefulness of the upper critical dimension for determining the validity of the population
balance equation is lost when the aggregation frequency is unknown. The validity of the equation
can be inferred from the similarity or scaling distribution and the evolution of the average particle

size in such cases.
PACS number(s): 05.40.+j

I. INTRODUCTION

The kinetics of aggregation are described by an infinite
hierarchy of product-density equations [1-4]. The first-
order product density equation gives the evolution of the
transient size distribution, n(v,t), as
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where n(v, t) is the number density of clusters of mass m
at time ¢ normalized so that
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na(v,v’,t) is the joint density of pairs of size v and v’ at
time ¢ and K (v, v’) is the binary agglomeration frequency
function. Notice that the above equation is unclosed be-
cause the evolution of n(v,t) depends on na(v,v’,t). The
second-order product density equation that gives the evo-
lution of ng(v,v’,t) will feature the third-order density
and so on.
A convenient restatement of the above equation is
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where K*(x,y,...) = K(z,y)n2(z,y,t)/n(z, t)n(y, t). If
K*® = K, we have

na(v,v’,t) = n(v, t)n(v’, t), (2)

which is the mean-field or superposition closure hypothe-
sis [4]. The first-order product density equation with the
first-order closure hypothesis is referred to as the popu-
lation balance equation (PBE) or the Smoluchowksi co-
agulation equation. The dots in the argument of the
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function K° represent potential dependence of this ef-
fective agglomeration frequency on other particles in the
distribution or on the state of the population. This de-
pendence manifests itself as dependence on time.

Basically the above closure approximation is tanta-
mount to neglecting any correlations in the pair den-
sity ma(v,v’,t) which may arise either due to slowness
of spatial mixing resulting in segregational or correlation
effects [5, 6] or due to the smallness of particle popula-
tions (7, 8].

In this paper we investigate the statistical foundation
of the population balance equation (or Smoluchowski co-
agulation equation) and address the issue of an upper
critical dimension for an aggregation process raised by
Kang and Redner [5]. A fundamental understanding of
the basis of the population balance equation is essen-
tial to assess the conditions under which the first-order
closure hypothesis is valid. The motivation for investi-
gating the validity of the closure hypothesis of course lies
in testing the ability of the resulting population balance
equation to predict experimental observations.

In this paper, the validity of the idea of an upper crit-
ical dimension for agglomerating systems is investigated.
We show that the upper critical dimension is not the
best way to categorize the validity of the mean-field pop-
ulation balance equation for agglomeration particularly
when the aggregation frequency is unknown. In fact, the
expected number of particles in a cell volume is the im-
portant characterizing quantity. The cell volume is the
maximum spatial volume in which a particle may interact
with other particles within the time scale of observation.
The results obtained by this approach are compared with
previous literature results.

Some work has been done in the chemical engineer-
ing literature on the question of closure. Sampson [7-9]
performed Monte Carlo simulations of Brownian coagula-
tion of spherical particles and compared the predictions
of the PBE with the simulation results. Under certain
circumstances, deviations from the PBE were observed.
In order to investigate the closure problem, the first-order
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product-density equation (which is the PBE without the
closure hypothesis) and the second-order product-density
equation were used to describe the system. Various forms
of closure hypotheses in the second-order product density
equation were used and a “best” closure hypothesis was
determined by comparison of Monte Carlo simulation and
the product density predictions.

The Monte Carlo simulations of Sampson which are of
interest to us are the so-called constant number simula-
tions of Brownian coagulation. In these simulations, the
number of particles were kept fixed and the volume of
mixing was allowed to increase with time. These simu-
lations reflect Brownian coagulation because the number
of particles within a mixing volume is constant through-
out agglomeration. This fact was confirmed by large-
scale spatial simulations of Brownian coagulation. The
nature of these simulations and the physics of Brownian
coagulation will allow us to draw some conclusions about
Sampson’s results upon completion of this analysis.

In recent years, the question of validity of the popula-
tion balance equation has arisen within the physics lit-
erature. The population balance equation in the physics
literature is often called the Smoluchowski equation and
is also referred to as a mean-field equation since spatial
fluctuations are averaged over. The question of validity
of the mean-field approach has centered on the idea of
an upper critical dimension, d.. For agglomeration oc-
curring in a Euclidean dimension above the upper critical
dimension the mean-field population balance equation is
valid and predicts transient agglomeration well from an
uncorrelated initial condition. In other words, the com-
monly written first-order closure hypothesis is valid. For
agglomeration occurring in a Euclidean dimension less
than or equal to the upper critical dimension, the popu-
lation balance equation does not necessarily predict the
transient evolution of an agglomerating population. The
first-order closure hypothesis is not valid.

Kang and Redner [5] were the first to investigate the
question of an upper critical dimension for agglomera-
tion. Via direct simulation, they determined the up-
per critical dimension for a constant agglomeration fre-
quency, K;; = 1, to be d; = 2. Computational results
suggested to Kang and Redner that the upper critical di-
mension for all agglomeration processes may be 2. van
Dongen [10] determined an expression for the upper crit-
ical dimension for given homogeneous agglomeration fre-
quencies. He found that the upper critical dimension may
range from 2 to infinity depending on the agglomeration
frequency.

II. CLASSIFICATION OF PROBLEM

Investigations into the validity of the closure hypoth-
esis can be classified into three basic approaches. The
first approach is that used by Kang and Redner [5] and
also by van Dongen [10]. We shall refer to this as the
mean-field approach. It assumes that a time-independent
agglomeration frequency is known. With the use of this
agglomeration frequency, an upper critical dimension is
determined by computational means or by analysis of
the the stochastics of agglomeration. One of the inher-
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ent problems with this approach is that it assumes that
the agglomeration frequency remains the same for dif-
ferent Euclidean dimensions as the dimension in which
the agglomeration is occurring changes. This is a highly
suspect assumption, and in fact for the only agglomer-
ation mechanism in which the dimensional dependence
is known, the assumption is not valid. This approach
also assumes that in the face of possible particle interde-
pendence (as the closure hypothesis is violated) a time-
independent agglomeration frequency can be determined
that represents the agglomeration process for fixed Eu-
clidean dimension.

The second approach, which is the one which we pur-
sue, may be called the self-consistent mean-field ap-
proach. It assumes that agglomeration processes lead
to the development of self-similar size distributions inde-
pendent of the validity of the closure assumption. Effec-
tive agglomeration frequencies can be determined via our
inverse problem [11-13] approach that describe the evo-
lution of the transient size distribution. This extracted
agglomeration frequency is tested for implicit dependence
on time. If significant time dependence is found then the
closure hypothesis is not valid. The basis of this ap-
proach is the observed self-similar size distribution and
not an a priori assumed agglomeration frequency. The
consequences for the validity of the closure hypothesis
are examined further in this paper.

The third possible approach is what we will call the
empirical approach. This approach consists of empiri-
cally observing the rate of agglomeration between par-
ticle pairs and determining their rates of agglomeration.
This approach has the same drawbacks as the direct ob-
servation approach mentioned previously. The agglomer-
ation frequency in this approach will be explicity depen-
dent on time in general.

III. CLOSURE HYPOTHESIS VALIDITY

In this section, the self-consistent mean-field approach
is used to determine the validity of the first-order closure
hypothesis. The approach is to assume that an agglom-
erating system evolves to a self-similar size distribution.
The evolution of the average particle size can be written
as [12,13]

ds N
— = (5)S™. 3)
The parameters (b) and A are known for the process of
interest. Also, the details of the similarity distribution,
such as the order of singularity 7, are also known. This
approach focuses on the cell representation of an agglom-
erating system.

The cell representation of an agglomerating process
views the total system as composed of cells of volume
v. Particles may move between cells via diffusion. The
diffusion coeflicient of a particle of mass k is Dy, = Dk~ <.
Agglomeration occurs within the cells. The vector m =
{..., My, ...} describes the agglomerating system at any
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instant where m;y is the number of particles of mass i
in cell A at time t. In this representation, only discrete
values of the particle mass are allowed.

We assume that the vector m defines the state of a
Markov process. Markov processes are useful because
if the state of the stochastic process is known at time
t then the state at time ¢/ > t is known probabilisti-
cally. The mathematical statement of this property is
the Chapman-Kolmogorov equation [14, 15]. The differ-
ential restatement of the Chapman-Kolmogorov equation
is called the master equation [15] or the forward equation

14].
[ I_],et P(m,t) be the probability that the agglomerating
system is in state m at time ¢ from a given initial con-
dition. A master equation is written for the evolution of
P,

.

3227

0P(m,t) (a‘;‘ Y) _ Bu(m,t) + Pr(m, 1), (4)
where Py is the rate of change of P due to agglomeration
within the cells and Pr is the rate of change of P due to
the crossing of cell boundaries (i.e., transport).

Let W4 (m’|m) be the transition probability per unit
time (or the transition frequency) for a transition from
state m to state m’ due to agglomeration within the
various cells. Let us investigate W4 in more detail. Only
certain states are accessible from m. Also, only certain
states can lead to state m. Let us assume that within
the time scale of observation only binary agglomeration
events are allowed to occur. This assumption can always
be maintained by sufficiently reducing the time scale of
observation. The accessible states to and from m are

{oooymgn + Lmix+1,migin—1,..} = m= {..,m — Lmin —1,mypj0 +1,...}.

To determine an expression for Wy, we look at the
internal operations of agglomeration in a cell. Inside this
cell labeled A, there are a certain number of particles.
Let us at this time instant label every particle in the cell
as A,B,C, .... The position, velocity, and mass of each
particle are known. For the moment, we assume that the
probability that within the next observation time interval
particles I and J agglomerate given that I and J are in
the same cell is determinable as K } 7+ Then the transition
frequency is

Wa({...omix—1,mjxn—1,mupjr+1}m) = Z K}J.
I€i, JEj

Q)

If we assume that the agglomeration probability is only
a function of the particle size and does not depend on
the cell and that all other variables can be averaged over,

then K } =K L. and the transition frequency for agglom-

eration becomes

Wa({...,mix — 1,mjx — 1,mi45x + 1}|m)

= ngmi)\(mj)\ —6ij), (6)

where 6;; is the Kronecker delta.
An expression can now be determined for the rate of
change of Py,

. 1 _
Pa(m,t) =5 > KL(BaBNEZL - 1)
1,5,
xmgx(mjx — 6;5)P(m, t) (7)

where FE;) is called a step operator [15] and it acts upon
a function of m as follows

E»L)‘f({, mMix, }) = f({, miy + 1, })

Similar arguments as those for W4 lead to an expres-
sion for the transition frequency icr transport,

WT({...,m;m +1,mgx — 1, }|m) = w,’z,\mk)\, (8)

where wﬁ)\ is the probability that within the next obser-
vation interval a particle of mass k will move from cell A
to cell k. Pr is now determined,

Pr(m,t) = Y wk(EwnE;,! — )meeP(m,t).  (9)
k,<,A

Combination of Egs. (9), (7), and (4) give the evolu-
tion in time of P(m,t) for an agglomerating system. Al-
though this master equation is a single closed equation
for the evolution of an agglomerating system, its solu-
tion is difficult. The general approach to the solution of
a master equation is to solve for various moments of the
probability distribution.

We demonstrate the equivalence of the above master
equation approach and the product-density framework
for the evolution of agglomerating systems. By so doing,
the basic assumptions that are present in the product-
density approach become clear and also the assumptions
necessary for the application of the first-order closure hy-
pothesis are revealed.

The product-density approach is equivalent to writing
moment-evolution equations from the probability distri-
bution given by the master equation. For example, let
(my) be the expected number of particles of mass & in
a cell. Notice that all of the various cells have been av-
eraged over. Also let (m;(m; — &;;)) be the expected
number of particle pairs of masses i and j. By definition
of an expectation (mg) is

(mk) = mraP(m,t). (10)
A

By placing Eq. (10) into Eq. (4) and solving for the
evolution of (my),

dimi) _ (ma) dv _

1
dt v odt 2 > Kli(ivsk — bk — 8x)
g

(11)
The first term on the right-hand side of Eq. (11) cor-

x(mi(m; — 6i5)).
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responds to the rate of increase of (my) due to a possible
increase in the cell volume. The second term represents
the rate of change of (my) due to agglomeration within
the cells. Note that Eq. (11) is now an unclosed equation
for the evolution of (my) Also notice that the evolution
of (my) does not depend on the details of the motion be-
tween cells. This effect is a consequence of averaging over
all the cells. Let n(k) be the concentration of particles of
mass k; n(k) = (mx) /v and na(3, j) = (mi(m; —8i;)) /v*.
Notice that K;; = K]v. In this way, K is converted
from a conditional probability based upon the cell vol-
ume to a conditional probability on a unit volume (which
is the agglomeration frequency). Equation (11) becomes

dn(k) 1 -
d(t = —2- ; Kij (5i+_7',k: - (Sik - 6jk)n2(1’.])' (12)

This equation is the discrete form of the first-order
product-density equation [Eq. (1)]. The assumptions of
the product density equations become clear. They are (i)
the particle mass (or particle volume) is the important
physical variable, (ii) the other variables such as position
in the cell or velocity of the particles in the cell can be
averaged over or are correlated with particle mass (i.e.,
m defines the state of a Markov process) and (iii) the
rate constant K;; is independent of position.

Upon accepting the above basic assumptions, our at-
tention can be turned to the closure hypothesis. The
first-order closure hypothesis can be written as

na(i,5) = n(i)n(5) (13)

in discrete form. This closure approximation is the same
as

(mi(my; = 6i5)) — (mai)(my). (14)

As (m;) and (m;) increase the expected number of
pairs (m;(m; —6;;)) approaches (m;)(m;). Our approach
assumes that similarity is observed; similarity imposes a
constraint on the evolution of the size distribution such
that the number of particles of one size relative to the

entire population of particles must stay fixed in order for
similarity to be maintained, then

{mi) _ n(i)
(m;)  n(j)
Thus as the total expected number of particles, (N) =
> k{mg), in a cell increases, the closure approximation
becomes better. If the expected number of particles in a
cell (N) becomes small the closure approximation wors-
ens. Thus we use (N) as an indicator of the quality of
the closure approximation.
An equation can be determined for the evolution of the
expected number of particles in a cell from the master
equation,

d<N> dv 1 t
— = Moy — 3 ;Kﬁ(mi(mj —6i5))

= const. (15)

(16)

where My is the total number density My = >, n(k).
The second term on the right-hand side can be identi-
fied as the reciprocal mean first passage time (7,) [14]
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between agglomeration events within a cell; i.e., between
state}s {iymixn, ..} and {..,man — L,myn — 1,maygjx +
1,..}.

The key physical input arises at this point. The mean
first passage time (7,,) must be interpreted in terms of
known quantities. The process envisaged here cannot be
viewed strictly as a continuous time process, but actually
as a discrete time process on a fine time scale Tops. If Tops
is too small, the process cannot be viewed as a Markov
process with respect to the variable m. If 74,5 is too
large then between observations one particle may have
undergone multiple agglomeration events (a possibility
we have already assumed to be negligible). A relationship
between the cell size v and 7ops can be obtained,

p1/d

minTobs, (1 7)

where Vyin is the root-mean-square-minimum velocity of
a particle in a cell. At this stage the analysis is restricted

e 1/2_-1/2
to diffusive processes so Viyin = DT,

bs  Where Dy
is the minimum diffusion coefficient. We guarantee that
the observation time 7,ps is small for all times by relating
it to the mean first passage time (which may change in

the course of agglomeration). Let

Tobs = Kl <Tm>a

where K; < 0.01.

(18)

IV. EXPECTED NUMBER OF PARTICLES
IN CELL

With the physical connection between the mean first
passage time and the observation time scale, it is possible
to determine expressions for (V).

The solution to Eq. (16) is

(19)

—d/d+2
<N> — (Klein)d/d+2M0 (_ dMO)

dt

The number of particles in a cell will increase, decrease,
or remain constant depending on the Euclidean dimen-
sion. If similarity is observed then Eq. (19) can be cast
in a more compact form since the evolution of My is de-
termined by the evolution of S(t). The evolution of My
depends on the degree of singularity 7 of the similarity
distribution ®(z). See [12] for an explanation. The evo-
lution of My and thus Eq. (19) can be broken into two
cases. Case (i) occurs when 7 < 1 and case (ii) occurs
when 7 > 1. If the similarity distribution is not singular
at the origin then 7 = 0, and case (i) holds.

In this case, My = poS~! and D, = K.DS™<.
Equation (19) becomes

K, K,D\#¥4*?
(N) = (—p—0<b—)—) poSX@, (20)
where
d
x(d) = m(l —a—A—2/d).

This is where the identification of an upper critical
dimension d. could be made. If o and A were a fixed
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function of the Euclidean dimension, then we could let
d. be the dimension such that x(d) = 0,

_ 2
Tl—a-=-\

From the point of view of our self-consistent mean-
field approach, the upper critical dimension is not neces-
sary or useful because the parameters A and «a are only
known in Euclidean dimensions in which the agglomer-
ation process has been observed. The expression given
above is for comparison purposes only. Equation (21)
can be compared with previous expressions determined
by other investigators. It is identical to an expression for
the upper critical dimension determined by van Dongen
[10] by different arguments. He did not, however, address
case (ii) which must also be considered.

For this case My = p5S™~2. Equation (19) becomes

de (21)

_ K K,D \%%2 @
(N) = (m) poSX(¥, (22)
where
X(d)=$ (l—a—)\—?—(id_—l)-).

Again an upper critical dimension could be identified
as

_2(2-1)
dc“l—a—)\'

The upper critical dimensions, determined in the past
for specific agglomeration frequencies when the relative
motion is diffusion, are in agreement with those obtained
from (21) or (22) as the case may be. For the reaction
constant K;; = (ij)*/? with a = 0 and A > 0, there is
some disagreement in the literature over the upper crit-
ical dimension. Kang et al. [16] determined d. = 2,
while van Dongen applied equation (21) and calculated
de = 2/1 — A. Our approach to the upper critical di-
mension for this reaction constant is as follows. First,
the self-similar size distribution gives 7 = 1 + A from the
asymptotic behavior. Thus case (ii) and Eq. (23) are
used to determine that d. = 2 in agreement with Kang
et al.

(23)

V. BROWNIAN COAGULATION
OF COMPACT CLUSTERS

An example illustrates our contention that validity of
the mean-field equation is not determined strictly by ad-
herence to an upper critical dimension. Let us examine
the Brownian coagulation of compact clusters in greater
detail. In this case there is dimensional dependence of «
and A. For Brownian coagulation of compact clusters in
a Euclidean dimension d > 2, o = 1/d and XA = (d—3)/d.
The self-similar size distribution ®(z) falls to the origin
as z — 0. With the aid of Eq. (20), x(d) = 0 for ev-
ery dimension. This indicates that there is no way of
independently varying the dimension d to vary the value
of x(d). In this case, if we examined the upper critical
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dimension for Brownian coagulation of compact clusters,
we find that every dimension is a critical dimension, i.e.,
gives a value of x(d) = 0. This example illustrates that
although the mechanism of relative motion of particles
can be kept fixed for various Euclidean dimensions, the
agglomeration frequency cannot be held fixed, and thus
X cannot be held fixed and thus the upper critical dimen-
sion cannot be determined.

The fact that x(d) = 0 means that the expected num-
ber of particles in a cell, (IV), is constant througout the
course of agglomeration since (V) does not depend on
S(t). The implication of this is that if the ratio of diffu-
sion to agglomeration represented by D/(b) in Eq. (20)
is large initially then the expected number of particles in
a cell will be large and the first-order closure hypothesis
is valid. If, however, the ratio of diffusion to agglomera-
tion D/(b) is initially small, then the first-order closure
hypothesis is not useful initially or at any later time.

The observations of Sampson [9] can be explained with
respect to the above statements. He observed via large-
scale spatial simulations of Brownian coagulation that
the number of particles Npix within a mixing volume
Viix stayed approximately constant. The volume of mix-
ing increased with time and engulfed more particles that
offset the loss of particles due to agglomeration. He could
therefore view Brownian coagulation of compact clusters
as made up of a series of independent mixing volumes
which contained a constant number of particles. This
view is identical with our view with the realization that
(N) = Nmix and v = Vpix. Sampson’s view led him
to approximate the full scale spatial simulations with a
series of smaller simulations in which the number of par-
ticles within a mixing volume were held constant. These
simulations are Sampson’s constant-number simulations.
From these constant number simulations he tested the
validity of various closure hypotheses. He found that
for a large number of particles in the cell, the first-order
closure hypothesis was valid. He also found that if the
number of particles in the cell became smaller, (N) ~ 50,
the significant deviations from the first-order closure hy-
pothesis could occur. He also found that the validity of
the closure hypothesis did not change in the course of
agglomeration. All of these features can be explained by
the approach outlined above. Since the expected num-
ber of particles (IN) does not change with time, the only
deviations from the first-order closure hypothesis should
arise from the initial condition, i.e., the initial number of
particles in a cell.

VI. SUMMARY AND CONCLUSIONS

The cell representation of an agglomerating popula-
tion gives rise to a master equation for the probability
that the system is in state m at time ¢, P(m,t). This
equation cannot in general be solved. Equations for the
evolution of the various moments of the probability den-
sity can be written from the master equation. This series
of equations is identical to the product-density hierarchy.
The product-density hierarchy is an infinite set of equa-
tions for the moments of the probability density and is
unclosed since the solution of the lower-order product-
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density equations require the solution of the higher-order
equations. In order to solve this set of equations a clo-
sure hypothesis must be made. The first-order closure
hypothesis replaces this infinite set of equations with a
single equation. This single equation is commonly called
the population balance equation.

In this paper, we have addressed the assumptions of
the population balance equation for an aggregating sys-
tem. We also developed criteria for the applicability
of the first-order closure hypothesis. Our criteria as-
sumed that the agglomerating population evolved to a
self-similar size distribution. Our approach, which we
call the self-consistent mean-field approach, is contrasted
with mean-field approach of van Dongen and Kang and
Redner. Their mean-field approach assumed that the ag-
glomeration frequency is known a priori. This assump-
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tion allows the calculation of an upper critical dimension,
d.. We show that while our approach enables a determi-
nation of an upper critical dimension for agglomeration
it does not adequately describe the validity of the first-
order closure hypothesis. The actual quantity of interest
is the expected number of particles in a cell (N}, expres-
sions for which are determined.
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